Схемы генераторов по маркам машин (список)
Современные схемы генераторов без дополнительных диодов
Использование микроконтроллеров, в регуляторах напряжения, позволило отказаться от дополнительных диодов.
Регуляторы напряжения могут иметь различные схемы, которые обозначаются типом внешнего подключения: L, L-DFM, L IG S, FR SIG, RLO, C, COM
Все типы регуляторов имеют различные дополнительные свойства, и встроенные защиты от короткого замыкания и скачков напряжения.
Рассмотрим пример схемы генератора L IG S
Схема генераторов DENSO, которые применялись на автомобилях Тойота
Схема генератора с регулятором напряжения типа L IG S
Регуляторы такого типа применялись на генераторах фирмы Денсо для автомобилей Тойота
Регулятор представляет собой микросхему с несколькими навесными элементами.
Силовой транзистор Т2, который работает в ключевом режиме, включает и отключает ток возбуждения.
Транзистор Т1 управляет лампочкой контроля зарядки.
Микросхема работает по более сложной программе, чем регулятор на дискретных элементах, что позволяет упростить схему самого генератора.
Регулятор напряжения имеет разъем L IG S, для внешнего подсоединения, и клеммы для внутреннего подсоединения к цепям генератора B, P, F, E
Назначение выводов внешних
S – подвод напряжения с выхода генератора и аккумулятора для контроля уровня напряжения.
IG- питания цепей регулятора после включения замка зажигания
L - подключение лампочки контроля заряда
Назначение выводов внутренних соединений регулятора
B - подвод тока возбуждения от выхода генератора
P - подвод переменного напряжения с фазы генератора
F - отвод тока возбуждения от ротора
E – земля
Работа схемы
В выключенном состоянии к точке В подведен плюс от аккумулятора, но транзистор Т2 полностью закрыт и тока по цепи возбуждения нет. Плюс действует на точке S, но это вход с очень высоким сопротивлением и тока не потребляет.
При включении зажигания плюс от аккумулятора попадает на точку IG и на точку L через лампочку.
Микросхема DD получает питание по цепи IG. Транзистор Т1 открывается и лампочка загорается, сигнализируя о том, что генератор готов к работе, но еще не работает.
Микросхема DD переводит транзистор Т2 в импульсный режим, с такой скважностью, что среднее значение тока оказывается достаточным для подвозбуждения генератора. От плюса, через точку В, в обмотку возбуждения идет ток через транзистор Т2. Ток очень маленький и противодействие ротора вращению двигателя получается очень слабым, что облегчает запуск двигателя и создает более щадящий режим для аккумулятора и стартера.
Стартер начинает раскручивать двигатель. Ротор вращается и подмагниченный начальным током возбуждения, начинает генерировать в обмотке генератора переменное напряжение.
Возникшее переменное напряжение, с одной из обмоток попадает на точку Р регулятора, и на соответствующую ножку микросхемы. Сигнал о появлении переменного напряжения, означает, что двигатель завелся и можно включать генератор. Микросхема переводит транзистор Т2, на такую длительность импульсов при которой ток возбуждения становится достаточно большим, чтобы генератор вышел на рабочее напряжение и начал отдавать достаточную мощность. Ток возбуждения (показано стрелками) от плюса, через точку В, идет в обмотку возбуждения, и через транзистор на Т2 на массу. Ротор сильно намагничивается и генератор начинает работать. Транзистор Т1 получает от микросхемы команду на закрытие и лампочка гаснет, что подтверждает нормальный режим работы генератора.
Далее задача регулятора состоит в поддержании рабочего уровня напряжения на выходе генератора.
Генератор все время поднимает напряжение и стремится превысить его нормальный уровень. Регулятор ограничивает напряжение на заданном уровне. Микросхема DD обеспечивает широтно – импульсное управление (ШИМ – регулятор). Среднее значение тока, протекающего в обмотку зависит от длительности импульса открытого состояния ключевого транзистора Т2. Когда напряжение на выходе генератора возрастает, то микросхема, получая это напряжение на точку S, уменьшает длительность открытого состояния транзистора, и среднее значение тока возбуждения снижается, напряжение на выходе генератора снижается, далее, длительность импульсов вновь увеличивается и напряжение возрастает, таким образом, поддерживается заданный уровень выходного напряжения с достаточно высокой точностью - около 14, 4 Вольта
Диод, шунтирующий обмотку возбуждения, защищает транзистор от возможного пробоя импульсом высокого напряжения. При закрытии транзистора, ток возбуждения резко снижается, это вызывает скачок ЭДС самоиндукции в обмотке, и импульс напряжения прикладывается к транзистору. Диод, создает котур для тока и ЭДС самоиндукции не может создать импульса высокого напряжения.
Схема генератора не нуждается в дополнительном выпрямителе для питания обмотки возбуждения.
Устаревшая схема генератора с доп. диодами имела такие преимущества пред первыми схемами:
- исключалась разрядка аккумулятора при включенном зажигании и не заработавшем двигателе
- задержка возбуждения генератора при запуске, пока работает стартер
- возможность использования лампочки для контрола зарядки аккумулятора
Все это может делать и данная схема на микроконтроллере
Схема регулятора напряжения защищает аккумулятор от разрядки через обмотку возбуждения, в случае если зажигание включено, а двигатель не работает.
Как и в схеме с дополнительным выпрямителем, схема потребляет ток на свечение лампочки – сигнализатора разрядки и еще потребляет небольшой ток через обмотку возбуждения, необходимый для первоначального возбуждения, этот ток определяется импульсным режимом транзистора Т2 , его среднее значение оказывается достаточно мало, что не оказывать существенное влияние на разрядку аккумулятора, поэтому в автомобиле, который не завелся, долгое время может быть включено зажигания без риска разрядки аккумулятора через генератор.
На данном рисунке показана схема генераторов на 100 и 110 Ампер, для генераторов меньшей мощности достаточно обычного диодного моста с шестью диодами.